Identification of first acute Q wave and non-Q wave myocardial infarction by multivariate analysis of body surface potential maps.
نویسندگان
چکیده
BACKGROUND Patients with acute non-Q wave myocardial infarction (NQMI) appear to have more jeopardized residual myocardium at high risk for subsequent angina, reinfarction, or malignant arrhythmias than patients with acute Q wave myocardial infarction (QMI). Unfortunately, conventional electrocardiographic (ECG) criteria have limited utility in recognizing NQMI. METHODS AND RESULTS The present study combines the increased information content of body surface potential maps (BSPM) over the 12-lead ECG with the power of multivariate statistical procedures to identify a practical subset of leads that would allow improved diagnosis of NQMI. Discriminant analysis was performed on 120-lead data recorded simultaneously in 159 normal subjects and 308 patients with various types of myocardial infarction (MI) by using instantaneous voltages on time-normalized P, PR, QRS, and ST-T waveforms as well as the duration of these waveforms as features. Leads and features for optimal separation of 159 normals from 183 patients with recent or old QMI (group A) were selected. A total of six features from six torso sites accounted for a specificity of 96% and a sensitivity of 94%. All lead positions were outside the conventional electrode sites and selected features were voltages at mid-P, early and mid-QRS, and before and after the peak of the T wave. The discriminant function was then tested on 57 patients with acute NQMI (group B) and 68 patients with acute QMI (group C): Rates of correct classification were 91% and 93%, respectively. Because of the possible deterioration of the results caused by ST-T abnormalities also present in other clinical entities, a second classification model including an independent group of 116 patients with left ventricular hypertrophy (LVH) but without MI was developed. Two additional measurements were required, namely, P wave duration and a mid-QRS voltage on a lead located 10 cm below V1. Testing the model on both acute MI groups produced correct classification rates of 88% for acute NQMI and 93% for acute QMI. Group mean BSPM were plotted for the three MI groups at successive instants throughout the PQRST waveform. Typical patterns for each MI group were identified during PQRST by removing the corresponding normal variability at each electrode site from sequential MI maps. These standardized maps or discriminant maps provided information on the capability of each measurement at each electrode site and at each instant to separate each class of MI from the normal group (N). Striking similarities were observed between the three MI groups, particularly at mid-QRS and throughout ST-T. The closest resemblance was between acute NQMI and old QMI. Discriminant analysis was also performed on the 12-lead ECG: The first classification model (N versus MI) produced correct classification rates of 85% for acute QMI and 70% for NQMI. With the second model (MI versus N or LVH), correct rates were 81% and 65%, respectively. CONCLUSIONS Diagnosis of acute NQMI and QMI (also in the presence of LVH) can be improved substantially by appropriate selection of ECG leads and features. Comparison of discriminant maps from groups A, B, and C does not support the concept of acute NQMI as a distinct ECG entity but rather as a group with infarcts of smaller size. However, pathophysiological and clinical differences between acute NQMI and acute QMI influence long-term risks and may define different therapeutic approaches.
منابع مشابه
New body surface isopotential map evaluation method to detect minor potential losses in non-Q-wave myocardial infarction.
BACKGROUND Potential losses caused by stable non-Q-wave myocardial infarction (MI) are too small to diagnose with the use of standard ECG. The aim of the present study was to obtain accurate diagnostic criteria for this prognostically important disease with the help of body surface mapping. METHODS AND RESULTS Body surface potentials were recorded with the use of 63 unipolar leads in 45 patie...
متن کاملClinical Significance of P Wave Dispersion in Prediction of Atrial Fibrillation in Patients with Acute Myocardial Infarction
Background: P wave dispersion (PWD) is defined as the difference between the maximum P wave duration (Pmax) and the minimum P wave duration (Pmin) in 12-leads of the surface electrocardiography. The aim of this study was to evaluate the values of PWD during atrial fibrillation (AF) after acute myocardial infarction (AMI). Methods: We prospectively evaluated atrial rhythms of 350 patients (251 m...
متن کاملاثر ترکیبی آنتی اکسیدانت ها بر اندازه انفارکتوس حاد میوکارد
Background and purpose : The role of oxygen-derived free radicals in destruction of myocardial cells during acute ischemia or reperfusion has been proved. This phenomenon made the workers to study and find the inhibitory therapeutic methods in order to reduce the myocardial cell destruction during acute myocardial infarction. This study evaluates the role of combined antioxidants on acute myo...
متن کاملCARDIOVASCULAR MEDICINE Early prediction of improvement in ejection fraction after acute myocardial infarction using low dose dobutamine echocardiography
Objective: To evaluate the relation between changes in ejection fraction during the first three months after acute myocardial infarction and myocardial viability. Patients: Myocardial viability was assessed using low dose dobutamine echocardiography in 107 patients at mean (SD) 3 (1) days after acute myocardial infarction. Cross sectional echocardiography was repeated three months later. Left v...
متن کاملEarly prediction of improvement in ejection fraction after acute myocardial infarction using low dose dobutamine echocardiography.
OBJECTIVE To evaluate the relation between changes in ejection fraction during the first three months after acute myocardial infarction and myocardial viability. PATIENTS Myocardial viability was assessed using low dose dobutamine echocardiography in 107 patients at mean (SD) 3 (1) days after acute myocardial infarction. Cross sectional echocardiography was repeated three months later. Left v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 84 6 شماره
صفحات -
تاریخ انتشار 1991